A Polynomial with Galois Group SL2(11)
نویسنده
چکیده
We compute a polynomial with Galois group SL 2 (11) over Q.Furthermorewe prove that SL 2 (11) is the Galois group of a regular extension of Q(t).
منابع مشابه
A polynomial with Galois group SL2(F16)
In this paper we show that the polynomial x − 5x +12x − 28x +72x − 132x + 116x − 74x + 90x − 28x − 12x + 24x − 12x − 4x − 3x − 1 ∈ Q[x] has Galois group SL2(F16), filling in a gap in the tables of Jürgen Klüners and Gunther Malle (see [12]). The computation of this polynomial uses modular forms and their Galois representations.
متن کاملNonsolvable Polynomials with Field Discriminant 5
We present the first explicitly known polynomials in Z[x] with nonsolvable Galois group and field discriminant of the form ±pA for p ≤ 7 a prime. Our main polynomial has degree 25, Galois group of the form PSL2(5).10, and field discriminant 569. A closely related polynomial has degree 120, Galois group of the form SL2(5).20, and field discriminant 5311. We completely describe 5-adic behavior, f...
متن کاملComputing the Galois Group of Some Parameterized Linear Differential Equation of Order Two
We extend Kovacic’s algorithm to compute the differential Galois group of some second order parameterized linear differential equation. In the case where no Liouvillian solutions could be found, we give a necessary and sufficient condition for the integrability of the system. We give various examples of computation. Introduction Let us consider the linear differential equation ( ∂XY (X) ∂2 XY (...
متن کاملALGEBRAS WITH CYCLE-FINITE STRONGLY SIMPLY CONNECTED GALOIS COVERINGS
Let $A$ be a nite dimensional $k-$algebra and $R$ be a locally bounded category such that $R rightarrow R/G = A$ is a Galois covering dened by the action of a torsion-free group of automorphisms of $R$. Following [30], we provide criteria on the convex subcategories of a strongly simply connected category R in order to be a cycle- nite category and describe the module category of $A$. We p...
متن کاملCourse 311: Hilary Term 2006 Part IV: Introduction to Galois Theory
4 Introduction to Galois Theory 2 4.1 Polynomial Rings . . . . . . . . . . . . . . . . . . . . . . . . . 2 4.2 Gauss’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3 Eisenstein’s Irreducibility Criterion . . . . . . . . . . . . . . . 6 4.4 Field Extensions and the Tower Law . . . . . . . . . . . . . . 6 4.5 Algebraic Field Extensions . . . . . . . . . . . . . . . . . . . . 8 4....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 30 شماره
صفحات -
تاریخ انتشار 2000